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A nodal triangle-based spectral element (SE) method for the shallow
water equations on the sphere is presented. The original SE method uses
quadrilateral elements and high-order nodal Lagrange polynomials, con-
structed from a tensor-product of the Legendre-Gauss-Lobatto points. In
this work we construct the high-order Lagrange polynomials directly on
the triangle using nodal sets obtained from the electrostatics principle [16]
and Fekete points [22]. These nodes have good approximation properties
and far better Lebesgue constants than the nodal set derived from equi-
spaced points on the triangle. By employing triangular elements as the
basic building-blocks of the SE method and the Cartesian coordinate form
of the equations, we can use any grid imaginable including fully unstruc-
tured grids. Since the construction of nodal triangle-based SE methods
may be new to many including those in the SE community we describe the
details of constructing the cardinal basis functions, the differentiation and
integration procedures, and the construction of filters required to maintain
stability. An existing code that uses triangular finite elements can be ex-
tended to incorporate the high-order basis functions we describe herein.
Results for six test cases are presented to confirm the accuracy and sta-
bility of the method. The results show that the triangle-based SE method
yields the expected exponential convergence and that it is more accurate
than the quadrilateral-based SE method even while using 30% to 60% fewer
grid points. However, at the moment, the quadrilateral-based SE method
is twice as fast as the triangle-based SE method.
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1. INTRODUCTION

The recent trend towards distributed-memory computers having thousands of
commodity processors has rekindled interest in the development of local high-order
methods for the simulation of geophysical fluid dynamics applications. The most
common local high-order method is the spectral element (SE) method. The SE
method can be constructed in modal (spectral) or nodal (physical) space. In ad-
dition, the building-blocks (or element shapes) used for the SE method have been
the quadrilateral or the triangle. If quadrilaterals are used then the SE method is
employed in nodal space where the basis functions are constructed from a tensor-
product of the one-dimensional Legendre cardinal functions [15]. However, if trian-
gles are used then the SE method has been typically employed only in modal space
[19]. This was due to the lack of a good set of nodal points for the triangle.

Using the electrostatics principle, Hesthaven [16] obtained a set of nodal points
on the triangle with good approximation properties for all polynomials of order
N < 11. For 11 < N < 15 we use the Fekete points [22] which are only cur-
rently available for orders N < 20. Using this nodal set on the triangle and the SE
method Warburton et al. [23] showed exponential convergence for the incompress-
ible Navier-Stokes equations. The success of these results has inspired us to seek
similarly successful applications of this nodal triangular set for the solution of the
shallow water equations on the sphere.

The shallow water equations are a set of first order nonlinear hyperbolic equations
which contain all of the horizontal operators found in the primitive atmospheric
equations used in numerical weather prediction (NWP) and climate models. Thus
to design a good atmospheric model requires a good shallow water model. The
construction of fast, accurate, and flexible atmospheric models is the ultimate goal
of our research. In this quest, we have successfully developed an exponentially con-
vergent global atmospheric model using the nodal quadrilateral-based SE method
[12, 13]. While the accuracy and performance of this model have been shown to ex-
ceed those of operational spectral transform models [13], developing adaptive grids
for quadrilateral elements may prove too cumbersome to pursue. The existence
of numerous adaptive triangular mesh generation packages [1, 8] motivates us to
explore nodal triangle-based SE methods.

The remainder of the paper is organized as follows. Section 2 describes the gov-
erning equations of motion used to test our numerical method. In Sec. 3 we describe
the discretization of the governing equations. This includes the spatial discretiza-
tion by the triangle-based SE method and the time-integrator. In Sec. 4 we describe
a few of the many possible triangular tessellations of the sphere. Finally, in Sec. 5
we present convergence rates of the nodal triangle-based SE method and compare
it with the quadrilateral-based SE method. This then leads to some conclusions
about the feasibility of this approach for constructing future atmospheric models
and a discussion on the direction of future work.

2. SHALLOW WATER EQUATIONS
The shallow water equations are a system of first order nonlinear hyperbolic
equations which govern the motion of an inviscid incompressible fluid in a shallow
depth. The predominant feature of this type of fluid is that the characteristic length
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of the fluid is far greater than its depth which is analogous to the motion of air
in the atmosphere and water in the oceans. For this reason these equations are
typically used as a first step toward the construction of either NWP, climate, or
ocean models.

The spherical shallow water equations in Cartesian advective form are
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where the nabla operator is defined as V = (8,,0,,0,)T, ¢ is the geopotential
height (¢ = gh where g is the gravitational constant and h is the vertical height
of the fluid), ¢* is the surface topography (e.g., mountains), u = (u,v,w)? is
the Cartesian wind velocity vector, f = 2°sz is the Coriolis parameter and (w, a)
represent the rotation of the earth and its radius, respectively.

The term px, where = (x,y,2)7 is the position vector of the grid points, is a
fictitious force introduced to constrain the fluid particles to remain on the surface
of the sphere. By switching from spherical (2D) to Cartesian (3D) coordinates we
have allowed the fluid particles an additional degree of freedom which will manifest
itself in the fluid particles flying off the surface of the sphere. In order to prevent
this from happening we introduce the Lagrange multiplier p.

The shallow water equations in Cartesian form have received significant atten-
tion recently (see [7, 9, 10, 11, 14, 21]). It should be mentioned that the Cartesian
form of the equations introduces no approximations whatsoever; the equations are
completely equivalent to the equations in spherical coordinates as shown by Swarz-
trauber et al. [21]. The reason for using the Cartesian form of the equations is that
the pole singularity associated with spherical coordinates is avoided and because
this form, in conjunction with the SE mapping described in Sec. 3.1.2, allows for
any curved surface to be discretized by this approach. For example, we could easily
change the shape of the spherical domain to any warped spheroidal. This will allow
for a more realistic representation of the earth since it is not a perfect sphere.

3. DISCRETIZATION

In this section we describe the discretization of the shallow water equations.
In Sec. 3.1, we describe the spatial discretization by the spectral element method
including: the mapping from physical 3D Cartesian space to the local 2D reference
space, the choice of basis functions, differentiation, integration, and the filter used to
maintain stability. In Sec. 3.2 we discuss the explicit time-integrator, the time-filter
used to control the computational modes, and the Lagrange multiplier required to
constrain the fluid particles onto the sphere.

3.1. Spatial Discretization by the Triangle-based Spectral Element

Method
3.1.1. Background and Motivation

To explain the need for the electrostatics and Fekete points on the triangle a few
words regarding interpolation theory are required. Let Py denote the space of all
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polynomials of degree < N and &; be a collection of points in Py. In addition, let
q be an arbitrary function that we wish to interpolate and Iy an unique function
in Py such that In(g(&)) = q(&). Using the usual definition of the Lo, norm

Il ¢ [|=maxeea | ¢(€) |

| In ||= max|q=1 | In(q) |

we can now quantify the error of approximating q by Iy(¢) within the triangle Q.
Assuming the existence of a function r € P which best approximates ¢ and noting
that we can write r = In(r) we can compute the interpolation error of ¢ as

lg—In(@) lI=llg—r+In(r) = In(g) | -

Using the Cauchy-Schwarz inequality yields

g —In(a) I< A+ ([ In () Tg—7 Il 3)

where || I || denotes the Lebesgue constant which must be minimized in order to
avoid the well-known Runge effect [19] typical of monomial expansions of the type
& | 0 < i+ j < N; these expansions become approximately linearly dependent
and hence quite ill-conditioned. This is the expansion typically associated with
the standard finite element method where the points (&,7) are equi-spaced within
the triangle. Since it is not known how to compute Lebesgue points (i.e., points
which minimize the Lebesgue constant) we use points computed via an electrostatics
analogy or points which maximize the determinant of the Vandermonde matrix
(Fekete points) which indirectly approximate them. On the 1-simplex (the line
& € [-1,+41]) the points satisfying the electrostatics and Fekete principles are in fact
the Legendre-Gauss-Lobatto (LGL) points. However, on the 2-simplex (the triangle
—1<¢&n <1; £+ n <0) determining which are the optimal points remains an
open question. Nonetheless, attempts have been made to construct nodal sets which
yield LGL points along the edges of the triangle. Both the electrostatics and Fekete
points satisfy this condition and the fact that they have good Lebesgue constants
make them suitable choices for constructing triangle-based spectral element basis
functions. The Fekete and electrostatics points coincide with the standard equi-
spaced points for N < 2. However, the Lebesgue constant for the Fekete (VIV)
and electrostatics points (N < 9) increases proportionally with N while for the
standard equi-spaced points the Lebesgue constant increases exponentially with N.

The term || ¢ — 7 || in Eq. (3) is minimized if the polynomial space Py is able
to approximate the function ¢. For the triangle this is in fact the case if the
Koornwinder-Dubiner polynomials [5, 17] are used as these are the natural bases on
the triangle. The construction of the cardinal functions based on the Koornwinder
polynomials is the topic of the next section. In this section, we have only discussed
the interpolation properties of certain nodal sets and bases, however, in order to
construct discrete operators requires not only good interpolation properties but also
good integration properties.

On the 1-simplex the LGL points happen to be both optimal interpolation and
integration points which results in a diagonal mass matrix since the interpolation
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and integration points are co-located; having a diagonal mass matrix is important
for achieving efficiency. On the 2-simplex such points have not yet been found and
thus far one must be content to choose either good interpolation or integration but
not both. In this paper we choose good interpolation and then use exact numerical
integration formulas (cubature) which, while quite accurate, does not result in a
diagonal or lumpable mass matrix, since the interpolation and integration points
are not co-located.

3.1.2. Basis Functions

To define the local operators which shall be used to construct the global approx-
imation of the solution we begin by decomposing the spherical domain  into N,
non-overlapping triangular elements {2, such that

Ne
0= U Qe
e=1
To perform differentiation and integration operations, we introduce the nonsin-
gular mapping & = ¥(€) which defines a transformation from the physical Carte-
sian coordinate system x = (x,y,2)7 to the local reference coordinate system
& = (&,m,() such that (£,n) lies on the spherical surface tiled by the triangular
elements defined by Q. = {({,7,(), —1<¢&n<1,£+n<0, (=1}

Associated with the local mapping, ¥, is the transformation Jacobian, J = %g,
and the determinant

ox ox Ox
|J|—6—C-G , G—(9—§x6—17 ,

where G represents the surface conforming component of the mapping (see Giraldo
[9] for further details).

We can now use this mapping to define the local representation of the solution,
q = (¢,uT)T, and the approximation of operations such as differentiation and
integration. For simplicity, we assume ( to be unity in what remains and denote
§=(&n)

Let us now represent the local element-wise solution g by an Nth order polyno-
mial in £ as

My
an(§) = Z Li(&)an (&)
k=1

where &, represents My = 2(N+1)(N+2) grid points and L (&) are the associated
multivariate Lagrange polynomials. For the grid points (£;,7;) we choose the nodal
set derived from the electrostatics principle [16] for N < 11 and the Fekete points
for 11 < N < 15.

We construct the Lagrange polynomials on the reference triangle, L (&,n), which
are implicitly defined by their cardinal nature, by reference to an easily constructed
orthonormal Koornwinder-Dubiner polynomial basis [5, 17]. This basis is defined

as
e = NI T ppo (Kn b 1) (17m) pasroyy gy
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where P28 (£) represents the nth order Jacobi polynomial in the interval ¢ €
[-1,4+1], K = i + j(N + 1) + 1, and the indices vary as 0 < i,j5;i +j < N,
and k=1,...,My.

We now seek an explicit formula for the Lagrange basis by representing them in
terms of the reference basis, i.e.

Mn
Li(&n) =Y Atk (&) (5)
k=1
where the indices are now defined as i,75,k =1,..., My. We then use the cardinal

property of the Lagrange polynomials
Mn

dij = ZAz'M/)k (&m5) 5
k=1

where § is the Kronecker delta function, to determine that

_ T
A = (g (&mi)) - (6)
We next recognize that

Vik = ¥ (&,m;5) (7)

is a generalized Vandermonde matrix and using Egs. (5), (6), and (7) we construct
the Lagrange polynomials as follows

My

Li€m) =Y (V) v (€m)- (8)

k=1

We note that, for example, the Vandermonde matrix generated using this basis and
the 15th order Fekete nodes only has a condition number of approximately 116.
This good conditioning allows us to use this approach in contrast to conventional
wisdom regarding poor conditioning of the standard monomial based Vandermonde.

3.1.8. Differentiation
Writing Eq. (8) in matrix form

L= (V_l) P 9)

one can show that the differentiation matrices in the reference coordinate system
are defined as

oL oL oL
6_£—D57 6_’0_ > S_C_DC
where
_(y-1\T 9% _(y-1\T 9% —_ (w17, _
Dg_(V ) 3’ Dn_(V ) an’ Dg_(V ) ¥ = L. (10)
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Using Eq. (10) and the chain rule one can show that the derivatives in the physical
Cartesian coordinate system are defined as follows

oL _ o a¢
9z~ Degy TP a +D<am
oL ot ac
-D D, 27 4+ p
oy tay T 6 . By
oL _ o a¢
5, P¢a, +D"82+ <5z

where % are just the components of the inverse Jacobian matrix J~! (for details
see Giraldo [9]).

3.1.4. Filtering the High-Frequency Waves
Recall that the local element-wise Vandermonde matrix can be written as

ij = "pj (&i,mi) -

Thus the function values at each grid point 4 inside the element €2, can be defined,
using a modal (spectral) expansion, as follows

My
g =Y i m); (11)
=1

where § represents the expansion coefficients in modal space of the function ¢. In
matrix form we can write Eq. (11) as

q=V4§ (12)

which we call the nodal triangle-based SE transform because it allows us to trans-
form from nodal to modal space. Inverting Eq. (12) yields

a=(V1)aq

which yields the amplitudes in the modal representation (amplitude-frequency space).
We can then filter these amplitudes in any manner but here, based on past experi-
ence [10, 12], we choose the Boyd-Vandeven transfer function [2] which we denote by
A. Applying the filter to the amplitudes and then transforming to nodal (physical)
space is achieved in the following matrix-vector multiply operation

where
F=VA (V_l) (13)
is the My x My filter matrix. This filter matrix is applied every 10 time-steps.

3.1.5. Integration
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In order to complete the discussion of the local element-wise operations required
to construct discrete spectral element operators we must lastly describe the inte-
gration procedure required by the weak formulation of all Galerkin methods. For
any two functions f and g the integration Z proceeds as follows

Mq
77,6 = | f(@)g(@de = 3w T€) | (€ 9(€)

where Mg is a function of ) - the order of the cubature approximation. For w; and
&, we use the high-order cubature rules for the triangle given in [20, 3, 4] of order
2N. This order is chosen for two reasons: first, it is a good compromise between
accuracy and efficiency; and second, it allows for a fair comparison of our new
triangle-based SE method with the quadrilateral-based SE method which typically
uses order 2N — 1 quadrature rules.

3.1.6. Local Element-wise Operators
To simplify the description of the numerical algorithm, let us define the following
local element operators: let

M = / Li(z)L;(x)dx (14)
represent the mass matrix,
b= @)Ly (a) VL (o) (15)
the differentiation matrix,
G = / Li(@)VL;(x)dz (16)
the gradient matrix, and
= [ L@ @) L@ @) (17)

the Coriolis matrix where i,j,k,0 = 1,...,My. Note that D = (Dg, Dy, Dg)
and G° = (G5, Gy, G?) are vectors of matrices corresponding to the three spatial
directions.

3.1.7. Satisfying the Equations Globally

To satisfy the equations globally requires summing the local element matrices,
Egs. (14) - (17), to form their global representation. This summation procedure is
known as the global assembly or direct stiffness summation. Let us represent this
global assembly procedure by the summation operator

Z

[e]
Il
-
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with the mapping (i,e) — (I) where ¢ = 1,..., My are the local element grid
points, e = 1,..., N, are the spectral elements covering the spherical shell, and
I =1,...,N, are the global grid points. Applying the global assembly operator to
the local element matrices results in the following global matrices:

N. N. Ne Ne
M=/A\M, D=A\D, G=\G°, c=/cC"
e=1 e=1 e=1 e=1

With these operators defined and by denoting the global grid vector for the grid
points as x, the geopotential as ¢, and the wind velocity as u we can now state the
variational form of the problem as: find (¢,u?)? € H'(Q)V L € H! such that

M% + D) u=— (DTu) 1) (18)
M%—?—i—(Du)Tu:—Cf(wxu)—G’(¢+¢s)—M(uw) (19)

where H1((2) is the space of all functions with functions and first derivatives be-
longing to L2() - the space of all functions that are square integrable over ().
For ¢ and u we choose the polynomial space Pn-Px without violating the inf-sup
condition.

3.2. Time-Integrator and the Lagrange Multiplier
Discretizing the equations in time by the leapfrog method yields

M¢™tt = Mot — 2A¢ ((qu)T u+ DTu¢)n (20)

Mum™t = My — 24t (Dw)" w+Cf(x x u))" (21)
— 2At(G(d + ¢°) + M(ux))" .

Since we need to ensure that the velocity field remains tangential to the sphere,
we require

xz-u=0.

Let us first write Eq. (21) as
u"t' = M~'B, - 2Atux, (22)
where
B, = Mu" ' =24t (Du)" u + Cf(x x u))" — 2t (G()+ ¢°))" .

Taking the scalar product of Eq. (22) with x, and rearranging yields

B= SR (M'B,). (23)
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Using Eq. (23) we note that we can project any 3D vector g onto the surface of the
sphere by applying the following matrix operator

Pqg=q- %(m ‘q)x (24)

where the projection matrix P is given by

1 a’?—-2? —zy —xz
P= 2| a’® —y? —yz . (25)
-2z —yz a2 -=22

This allows the equations in constrained form to be written as follows

M™t! = M¢™' — 2At ((D¢)T u+ DTuqS)n (26)

Mu™ = MPM'B,. (27)

3.2.1. Time-Filter

To complete the discussion of the time-integrator, we must describe the Asselin
filter used for the leapfrog method which otherwise would admit a nonphysical
mode to propagate in the opposite direction from the physical mode. This filter is
applied as follows

" =q"+~v(@"" -2q" +q" ") (28)

where the tilde represents the unfiltered solution and v = 0.01 is the filter strength.
While it is true that for v # 0 the leapfrog method becomes first order, we have
used this time-integrator because it is typically used in atmospheric and shallow
water models which will then facilitate comparisons with other methods. For more
suitable time-integrators for the shallow water and atmospheric equations the reader
is referred to the recent paper [13].

4. GRID GENERATION ON THE SPHERE

The choice of which triangulation to use for the sphere is not obvious. Commonly,
grids are chosen which simplify the construction of the discrete operators. For
example, latitude-longitude grids are used with spectral transform methods because
these are the only grids that can be used with this method. The hexahedral grid
(i.e., the cubed-sphere) has been used with finite difference and spectral element
methods because each of the six faces of the cube map onto a simple Cartesian
geometry that allows for the simple and rapid construction of the discrete operators.
Picking one grid and constructing the discrete operators on a specific grid geometry
simplifies matters but it also dictates the algorithm thereby losing any hope of using
other types of grids and adaptive solution strategies.

In our case, the spectral element method is constructed in a very general way
such that the model reads in any grid geometry and then constructs the discrete
operators directly on the grid. This allows the use of any grid and offers the free-
dom to choose the best possible grid for specific applications. For the purposes
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of validating the triangle-based SE method we shall use a disjointed set of trian-
gles formed by the subdivision of the triangular faces of an icosahedron; however,
it should be understood that any triangular grid can be used. We shall compare
the triangle-based SE method with the quadrilateral-based SE method described
in [9, 11, 12]. With the quadrilateral-based SE method we used hexahedral and
icosahedral grids. The choice of hexahedral grids is a natural one because it repre-
sents a structured grid that has become quite popular with many newly proposed
grid point methods. The quadrilateral-based icosahedral grid is chosen because it
is an unstructured grid and represents a good comparison for the triangle-based
icosahedral grid. Finally, to illustrate the geometric flexibility of the triangle-based
SE method we describe a number of triangular unstructured grids formed by the
Delaunay triangulation of various point sets.

4.1. Triangle-based Icosahedral Grids

To construct icosahedral grids we consider the initial icosahedron and subdivide
each of the initial triangles by a triangular Lagrange polynomial of order ny. Prior
to mapping these elements onto the sphere it is convenient to map the triangles
onto a gnomonic space. The most unbiased mapping is obtained by mapping about
the centroid of the triangles.

Let (A, @c) be the centroid of the triangle we wish to map where X\ represents
the zonal (east-west) and ¢ the meridional (north-south) directions. The gnomonic
mapping is then given by

acospsin(A — A;)

X = 29
sin @, sin @ + cos . €os p cos(A — A.)’ (29)

a[cos g, sin ¢ — sin @, cos @ cos(A — A.)]

Y =
sin . sin ¢ + cos @, cos p cos(A — A;)

where X € [—1,+1]? in the equi-distant gnomonic space G. To simplify matters a
bit, we first apply a rotation whereby Eq. (29) becomes

X = atan AR, Y =atanpgsecAgr , (30)

in the new coordinate system with the centroid (A, p.) located at (0,0). The
rotation mapping is given as

cospsin(A — \;)
sin . sin @ + cos @, cos p cos(A — ) |’

AR = arctan (31)
pr = arcsin[cos @, sin ¢ — sin @, cos cos(A — A)].

This approach enables the construction of a triangle-based icosahedral grid with
the following properties

N, = 10(ny N)?+2 , (32)
N, = 20(ny)? , (33)

where N, and N, denote the number of points and elements comprising the tri-
angular grid, and ny controls the number of triangular elements while N denotes
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the order of the polynomial inside each element. Table I and Fig. 1 provide

TABLE I
The number of grid points, IN,, and elements, N,, for the triangle-
based icosahedral grid as a function of ny and N.

nr N N, N,
2 1 42 80
2 2 162 80
2 4 642 80
2 6 1446 80
2 8 2562 80
2 10 4002 80
2 12 5762 80
2 14 7842 80
3 8 5762 180
4 8 10242 320
5 8 16002 500

(PRI <

IR EREN [
Ny, IO NN
NRRSHVAZSI NS O RIS
RSRESS% ] et

SERS AL 7

a)

FIG. 1. Triangle-based icosahedral grid forny =2 and a) N =4,b) N =8,and ¢) N = 12.

examples of grids for various values of N for ny. All the grids illustrated are viewed
from the North Pole where the thick lines denote the elements and the thin lines
are the high-order grid points.

Since we use the icosahedral grid to compare the triangle-based SE method with
the standard quadrilateral-based SE method on icosahedral and hexahedral grids
it is important to compare grids with comparable total grid points. From [12] the
number of points for the quad-based icosahedral and hexahedral grids are given as

N, =60(n¥ N)? +2 (34)
and

N, =6(n% N)? +2 (35)

where n? ands r®parameter which controls the number of elements in the
grids. Equating Eqs. (32), (34), and (35) shows that the triangle-based icosahedral
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grid has the same number of grid points as the quadrilateral-based grids for

n1=\/6n?= %n% (36)

which we approximate by nr ~ 2nf2 ~ %ng Thus n? =1, ng =3, nr = 2 should
yield approximately the same number of grid points.

It should be mentioned that these grid constructions do not actually yield the
same number of grid points and elements. In fact for this set of grid constructions
the triangle-based icosahedral grid has 80 triangular elements while the quadrilateral-
based icosahedral and hexahedral grids have 60 and 54, respectively. Although for
a given polynomial order (N) they all span the same polynomial space within each
element they differ greatly in the total number of grid points and in their distri-
bution. In fact, the triangle-based icosahedral grid has 33% fewer points than the
quad-based icosahedral grid and 25% fewer points than the quad-based hexahe-
dral grid. In addition, the triangle-based grid appears to be far more isotropic
than the quadrilateral grids. In other words, the triangle-based icosahedral grid
has no biasing in its orientation and thereby treats all directions equally. Unlike
the quadrilateral-based icosahedral grid, the quadrilateral-based hexahedral grid is
structured and isotropic but only along two directions in each of the six faces of the
hexahedron. Therefore, the hexahedral grid will do quite well for flows which are
aligned with these two directions. We shall see that some of the test cases benefit
from this type grid orientation while others do not.

4.2. Triangulations Based on the Platonic Solids

In the previous section we described the construction of triangular grids using the
icosahedron. However, there is nothing special about this Platonic solid; we could
have used any of the five Platonic solids. For example, one could use the tetrahedron
(4 triangular faces), hexahedron (6 quadrilateral faces), octahedron (8 triangular
faces), dodecahedron (12 pentagonal faces), or icosahedron (20 triangular faces).
However, the faces of the hexahedron and dodecahedron need to be subdivided
into triangular elements (24 for the hexahedron and 60 for the dodecahedron).
Using the Platonic solids one can create a grid with the following properties

N, = %( N)*+2 (37)

N, = Nrn? (38)

where N are the number of initial triangles comprising the Platonic solid and n
is the subdivision of each of the initial triangles. N = 4,8,20,24, and 60 for the
tetrahedron, octahedron, icosahedron, hexahedron, and dodecahedron, respectively.
In Fig. 2 we show equivalent resolution triangulations using the octahedron, icosa-
hedron, and hexahedron viewed from the North Pole. From Fig. 2 it is evident that
the octahedral and icosahedral grids are more uniform than the hexahedral grid;
this is due to the fact that the initial triangles of the octahedron and icosahedron
are equilateral triangles whereas those for the hexahedron are isosceles triangles.
However, there are hardly any differences between these sets of grids but due to
the popularity of icosahedral grids we shall use this set in Sec. 5 but it should be
understood that all these grids yield similar convergence rates.
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o
S—r

b) c)

FIG. 2. Triangulations of the sphere using the a) octahedron (N. = 64), b) icosahedron
(Ne = 80), and c¢) hexahedron (Ne = 96) viewed from the North Pole.

4.2.1.  Triangulations Based on Latitude-Longitude

Because triangles are the 2-simplex this means one can construct an unique tri-
angulation for random point sets distributed on the surface of the sphere. This
then facilitates the construction of triangulations on the sphere because as long as
one can create point sets they can be triangulated quite naturally using Delaunay
triangulation methods. For the latitude-longitude grids we use the STRIPACK
Delaunay triangulation software [18].

In this section we discuss a few of the many possible triangular grids that can be
constructed on the sphere. We limit the grids to fixed unstructured grids; that is,
grids that are constructed at the beginning of the time-integration and remain fixed
for all time. In the future we shall address the dynamically adaptive approach.

Latitude-Longitude grids are perhaps the simplest tessellations for the sphere.
In fact, they are popular for NWP and climate models because these are the only
grids that spectral transform methods can use. Figure 3a shows a regular latitude-
longitude grid with (Njopn, Nigt) = (40,20). On each latitude ring (East-West di-
rection) this grid has the same number of points (N, = 40) and the grid spacing
becomes smaller as we approach the poles. This situation is known as the pole
problem because there are too many redundant points near the poles as is illus-
trated by the lines of constant longitude (vertical) as they curve toward the poles.
In addition, the proximity of adjacent points near the poles severely restricts the
maximum time-step that can be used. One way around this dilemma is to use thin
grids. As we approach the poles, the number of points on each latitude ring is
decreased in order to maintain a constant grid spacing throughout. This type of
grid is depicted in Fig. 3b where lines of constant longitude no longer curve toward
the poles. Both the regular and thin latitude-longitude grids can be used with
the spectral transform method (without the triangular elements). However, if the
discretization method is based on triangles, then we can go even further and refine
the region of interest and use a coarse grid everywhere else. Figure 3c shows an
adaptive grid where the region of interest is along the Equator. We shall use this
grid to show the advantages that adaptive unstructured triangular grids may offer.

5. NUMERICAL EXPERIMENTS
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a) b) c)

FIG. 3. Triangulations of the sphere using the following types of latitude-longitude grids:
a) regular (Ne = 1600), b) thin (Ne = 1044), and c¢) adaptive (Ne = 1844) viewed from (0,0).

For the numerical experiments, we use the normalized Lo error norm

fQ ¢exact QdQ
¢
|| ||L2 \/ fQ d)exact

to judge the accuracy of the SE methods. To compute the Courant number the
elements are decomposed into their high-order (HO) grid points and these grid
points form a fine grid which we refer to as the HO cells. The velocities and grid
spacings are then defined at the centers of these cells. Using these definitions the
Courant number is then defined as

A e
Courant number = max (Q) Ve € [1,...,N.]
As ) go

where

C= U for casel
T\ U+ /¢ for cases2,3,4,5, and 6

where C' is the characteristic speed, U = v/u - u, and As = \/A22 + Ay? + Az? is
the grid spacing. For all the results presented the Courant number is taken to be
0.5.

Six test cases are used to judge the performance of the triangle-based SE method.
Cases 1, 2, 3, 5, and 6 correspond to the Williamson et al. standard test case suite
[24]. Case 4 was recently proposed by Galewsky et al. for testing shallow water
models [6]. This case presents a more challenging test than those in the Williamson
et al. test suite because if the resolution is not sufficiently high then the numerics
will not be able to sustain the steady zonal jet with steep vorticity gradient. If the
method cannot sustain the jet then the accuracy declines rapidly. Case 1 involves
the geopotential equation (passive advection) only whereas the remainder of the
test cases concern the full shallow water equations. In addition, cases 1, 2, 3, and 4
have analytic solutions whereas cases 5 and 6 do not and are only used to determine
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the accuracy of the triangle-based SE method qualitatively. These last two test
cases have been run by a vast community and the results are well-documented for
comparison.

5.1. Description of the Test Cases
5.1.1. Case 1: Passive Advection of a Cosine Wave

Case 1 concerns the solid body rotation of a cosine wave. The velocity field
remains unchanged throughout the computation. Williamson et al. [24] recommend
that the error be computed after 12 days of integration which corresponds to one
complete revolution of the cosine wave.

5.1.2. Case 2: Steady-State Nonlinear Zonal Geostrophic Flow

This case is a steady-state solution to the nonlinear shallow water equations. The
equations are geostrophically balanced and remain so for the duration of the inte-
gration where the velocity field remains constant throughout the computation. The
geopotential height ¢ undergoes a solid body rotation but since the initial height
field is given as a constant band in the zonal direction and the flow field is purely
zonal, then the solution remains unchanged throughout the time-integration. The
velocity field is the same as that used in case 1. Williamson et al. [24] recommend
that the error be computed after 5 days of integration.

5.1.3. Case 3: Steady-State Nonlinear Zonal Geostrophic Flow with Compact
Support

This case is another steady-state solution to the nonlinear shallow water equa-
tions where the equations remain geostrophically balanced for the duration of the
integration. The initial velocity field is zero everywhere except in a very small
isolated region. This isolated region, or jet, encapsulates the flow and confines the
geopotential height field to remain within a localized circular region. The results
are reported for a 5-day integration as suggested in [24].

5.1.4. Case 4: Galewsky et al. Zonal Dynamics

This test case consists of a zonal jet and an unperturbed balanced initial geopo-
tential height field. The balanced initial field should be maintained indefinitely but
Galewsky et al. [6] suggest running the case for 5 days. This is a rather stringent
test of shallow water models because if the accuracy and/or the resolution is not
sufficiently high then the model will not be able to sustain the balanced initial field
and the error will increase quite rapidly, unlike cases 1, 2, and 3 which are much
more forgiving. In addition, because the jet is zonally positioned, then any grid that
is not aligned with the zonal direction will have much more difficulty maintaining
the jet.

5.1.5. Case 5: Zonal Flow over an Isolated Mountain

This case uses the same initial conditions as case 2 with the addition of a conical
mountain at (A, ¢) = (180,30). Due to the zonal flow impinging on the mountain,
various wave structures form and propagate throughout the sphere. This test is
run for 15 days as suggested in [24].

5.1.6. Case 6: Rossby-Haurwitz Wave
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Although Rossby-Haurwitz waves are not analytic solutions to the shallow water
equations, they have become a de facto test case. In a non-divergent barotropic
model, the initial geopotential height field undergoes a solid body rotation in a
counterclockwise direction when viewed from the North Pole. Although this case
does not have an analytic solution, it is well-known that the initial wave structure
of the Rossby-Haurwitz wave should remain intact for the duration of the time-
integration.

5.2. Results on the Test Case Suite
5.2.1. Convergence Rate of the Triangle-based SE Method

Before analyzing the behavior of the triangle-based SE method on the standard
test case suite or delving into comparisons between the triangle-based SE method
with the quadrilateral-based method it is important to quantify the convergence
rate of the method. For this study we use case 2 and show convergence rates in
Fig. 4 for N =1,2,4,6,8,10,12 and 14. The order of convergence shown in Fig. 4
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FIG. 4. Case 2. The normalized ¢ error norm as a function of icosahedral grid refinement,
ny, after 5 days for the polynomial orders N = 1,2,4,6,8,10,12, and 14 with their associated
convergence rates.

is computed as an average convergence rate computed over all the grid refinements
where at each grid refinement the convergence rate is defined as

log [errory,, 41 /errory, ]
log[nr/(nr + 1)]

rate =

This figure shows that the expected spectral accuracy is achieved for all values of
N, that is,

error oc O(AzN+1)
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which states that the error decreases exponentially with increasing N.

5.2.2. Case 1: Passive Advection of a Cosine Wave

Figure 5 shows that the SE method on triangles and quadrilaterals converge
algebraically regardless of the structure of the grid. Exponential convergence is
not expected for this case because the derivative at the base of the cosine hill is
non-smooth. Note that the triangle-based and quadrilateral-based SE converge at
approximately the same rate with the quadrilateral-based method being slightly
better than the triangle-based method.

10 T w
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N - -- lco Quad
S Hex Quad
<)
=, A
10 ¢
N
-
o
[0}
N
©
E
S 1072
> 10
10_3 I I I I I I
0 2 4 6 8 10 12 14
Polynomial Order (N)
FIG. 5. Case 1. The normalized ¢ error norm as a function of polynomial order, N, after

12 days using 80, 60, and 54 elements for the icosahedral triangle-based (Ico Tri), icosahedral
quadrilateral-based (Ico Quad), and hexahedral quadrilateral-based (Hex Quad) spectral elements.

5.2.8. Case 2: Steady-State Nonlinear Zonal Geostrophic Flow

Figure 6 illustrates that the triangle-based and quadrilateral-based SE methods
yield exponential convergence. The quadrilateral-based hexahedral grid yields the
best results with the triangle-based icosahedral grid giving better results than the
quadrilateral-based icosahedral grid. The hexahedral grid will be very difficult to
beat for this test case because it is aligned with the direction of the flow. For this
reason it is expected that a latitude-longitude grid would also do extremely well for
this test case.

5.2.4. Case 3: Steady-State Nonlinear Zonal Geostrophic Flow with Compact
Support

Figure 7 shows that the triangle-based and quadrilateral-based SE methods,
again, yield exponential convergence; however, the triangle-based SE method is
slightly better than the quadrilateral-based SE methods. Unlike case 2, this case
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FIG. 6. Case 2. The normalized ¢ error norm as a function of polynomial order, N,
after 5 days using 80, 60, and 54 elements for the icosahedral triangle-based (Ico Tri), icosahedral
quadrilateral-based (Ico Quad), and hexahedral quadrilateral-based (Hex Quad) spectral elements.

represents a more localized flow problem. The circular region where the geopoten-
tial is confined is not aligned with any of the grids and so the isotropy of the grid
becomes an important factor. This explains why the triangle-based SE method on
the icosahedral grid yields better accuracy than the quadrilateral-based methods.

5.2.5. Case 4: Galewsky et al. Zonal Dynamics

Figure 8 illustrates the convergence rates of the triangle-based and quadrilateral-
based SE methods as a function of total number of grid points, Np, with 8th order
polynomials. This figure shows that triangle-based and quadrilateral-based SE
methods yield high-order convergence and that the triangle-based SE method is
superior to the quadrilateral-based SE methods. Once again, the absence of grid
alignment with the flow has hindered the quadrilateral-based SE methods from
resolving the physics of the problem as well as the more isotropic triangle-based
icosahedral grid. Figures 9 and 10 show snapshots of the grid, geopotential (¢), and
zonal velocity (u) after a 5-day integration for the triangle-based and quadrilateral-
based SE methods with various grid resolutions using 8th order polynomials. The
view of the figures is from the North Pole. In Fig. 9 it is observed that the resolutions
nr =3 (Np = 5762) and nr = 4 (N, = 10242) are not capable of maintaining the
jet. The formation of wave number 5 structures begin to emerge due to the lack
of symmetry in the grid near the initial points of the icosahedron (which form a
pentagon around the pole). For ny = 5 (N, = 16002) the balanced initial state
is maintained where the jet is visibly intact. Similarly, Fig. 10 shows that the
quadrilateral-based SE method on the hexahedral grid cannot maintain the jet for
resolutions IV, < 38402. Thus the triangle-based SE method on icosahedral grids
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FIG. 7. Case 3. The normalized ¢ error norm as a function of polynomial order, N,
after 5 days using 80, 60, and 54 elements for the icosahedral triangle-based (Ico Tri), icosahedral
quadrilateral-based (Ico Quad), and hexahedral quadrilateral-based (Hex Quad) spectral elements.
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FIG. 8. Case 4. The normalized ¢ error norm as a function of grid points, N, after 5

days using N = 8 for the icosahedral triangle-based (Ico Tri), icosahedral quadrilateral-based (Ico
Quad), and hexahedral quadrilateral-based (Hex Quad) spectral elements.

can maintain the jet with 58% fewer points than the quadrilateral-based SE method
on hexahedral grids.
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c)
FIG. 9. Case 4. Contours of the grid (left), ¢ (center), and us (right) for the triangle-based
SE method after 5 days for N = 8 and a) n; = 3 (Np = 5762), b) n; = 4 (Np = 10242), and c)
ny =5 (Np = 16002) viewed from the North Pole.

5.2.6. Case 5: Zonal Flow over an Isolated Mountain

Figure 11 shows snapshots of the fields after a 15-day integration for various grid
resolutions (with N = 8). The view of the figures is from (A,¢) = (180,0). All
three grid resolutions show the correct wave structures but the curves are much
smoother for increasing resolution.

5.2.7. Case 6: Rossby-Haurwitz Wave

Figure 12 shows snapshots of the fields after a 14-day integration for various grid
resolutions (with N = 8). The view of the figures is from the North Pole. All
three grid resolutions show the correct wave structures with the contours becoming
sharper with increasing resolution.

5.2.8. The Advantages of using Adaptive Unstructured Triangular Grids
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c)
FIG. 10. Case 4. Contours of the grid (left), ¢ (center), and us (right) for the quadrilateral-
based SE method after 5 days for N = 8 and a) ng = 8 (Np = 24578), b) ”2 =9 (Np = 31106)

, and ¢) ng =10 (Np = 38402) viewed from the North Pole.

To show the advantages that adaptive unstructured triangular grids may offer
we revisit case 1. For this test case the quadrilateral-based hexahedral grid yielded
a superior convergence rate to the triangle-based SE method on icosahedral grids.
It was conjectured that the alignment of the hexahedral grid with the direction
of the flow accounted for this difference in convergence rates. Therefore, let us
now compute the convergence rate for the triangle-based SE method on an adap-
tive unstructured grid aligned with the flow direction. Figure 13 shows the grid
(with N = 8) and the contours of ¢ after one revolution. Figure 14 shows that
the the convergence rate for the triangle-based SE method on the adaptive grid is
now superior to that of the quadrilateral-based SE method on both the hexahedral
and icosahedral grids. It should be mentioned that all three grids have approxi-
mately the same number of grid points. Constructing this type of grid with the
quadrilateral-based SE method is not possible.
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FIG. 11. Case 5. Contours of ¢ (left), us (center), and vs (right) for the triangle-based
SE method after 15 days for N = 8 and a) ny = 2, b) ny =4, and ¢) ny = 6 viewed from (180,0)
which is in the vicinity of the mountain.

6. CONCLUSIONS

The newly proposed triangle-based SE method exhibited its expected exponential
convergence. Furthermore, the triangle-based SE method was shown to be superior
to the quadrilateral-based methods for three of the four cases having analytic so-
lutions. Cases 5 and 6 have been typically used to represent challenging cases but
the triangle-based SE method was capable of representing the underlying physics
of these problems with a modest grid resolution. However, case 4 showed that for
crude resolutions, the wave structure collapses therefore representing a good addi-
tion to the Williamson et al. shallow water test case suite. For cases 1 and 2, the
quadrilateral-based SE method on hexahedral grids was shown to be superior to
the triangle-based SE method on icosahedral grids. These cases, however, represent
flows which are aligned with the hexahedral grid and for this reason it is difficult to
compete with the quadrilateral-based SE method. However, with the assistance of
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FIG. 12. Case 6. Contours of ¢ (left), us (center), and v, (right) for the triangle-based SE
method after 14 days for N = 8 and a) n; = 2, b) n; =4, and ¢) n; = 6 viewed from the North
Pole.

an adaptive unstructured grid, the triangle-based SE method proved to be superior.
Cases 3 and 4 have strong local characteristics whereby the geopotential height is
confined within a small circular region encapsulated by a jet. For these cases, the
hexahedral grid is no longer aligned with the predominant features of the flow. It
is conjectured that the isotropy of the triangle-based SE method on the icosahedral
grid is what allows the triangle-based SE method to achieve a better convergence
rate than the quadrilateral-based SE methods. The success of the triangle-based SE
method for these two test cases are encouraging because it implies that while the
method can accurately handle flows with strong global features it is much better
suited for handling flows with significant local characteristics. It is therefore a good
candidate for use with adaptive grids as was shown for case 1.

It should be mentioned that we have not shown performance comparisons be-
tween the triangle-based and quadrilateral-based methods. At the present the
quadrilateral-based SE method is at a far more mature stage than its triangle-
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FIG. 13. Case 1. The grid (left) and contours of ¢ (right) for the triangle-based SE method
for N = 8.
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FIG. 14. Case 1. The normalized ¢ error norm as a function of polynomial order, N, after

12 days using 92, 60, and 54 elements for the adaptive latitude-longitude triangle-based (Adapt
Tri), icosahedral quadrilateral-based (Ico Quad), and hexahedral quadrilateral-based (Hex Quad)
spectral elements.

based counterpart. Unlike the quadrilateral-based SE method, the triangle-based
SE method does not give rise to a diagonal mass matrix, M, and thereby requires
inverting a sparse global matrix at each time step. Even though the triangle-based
SE method requires 30% to 60% fewer grid points than its quadrilateral-based
counterpart to achieve the same accuracy, the inversion of a global matrix signifi-
cantly reduces the efficiency of the triangle-based method. In this paper we have
only presented the triangle-based SE method in its continuous form, in the fu-
ture we shall explore this method in its discontinuous form which eliminates the
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need for inverting a global matrix. We will also consider more efficient domain de-
composition techniques which will improve the apparent inefficiency in the current
approach. The exponential accuracy and geometric flexibility of the triangle-based
SE method merits further investigations into implementing it to the primitive at-
mospheric equations.
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